用频谱仪测试天线方法总结

/
天线性能的主要参数有方向图、增益、输入阻抗,驻波比,极化方试等,用频谱仪对单收天线主要是对天线水平、俯仰方向的两个方向图测试,根据方向图3dB处的角度,推算出天线增益,包络线法则验证天线的性能。

时域技术在天线测量中的应用

/
天线测试技术发展到目前,其测量方法已经涉及到频域、时域、空域及数字域。但常用的测量方法仍然以频域为主,而频域测试的指标只是得到该指标对应于频率的综合响应,而无法分析和区分其他因素如接头,传输线,馈电点,测试场环境反射对其影响和干扰程度,也难以去除这些影响测试准确度的干扰。

移动通信基站天线远场测量最小距离准则

/
天线方向图远场测量的收发距离在理论上需要达到无穷远,以便发射源天线在被测天线口径上的照射是理想的平面波,也即幅度均匀、相位同相。天线专业的实际应用中,幅度为了满足一定的均匀性(也即锥削度)需要降低源天线的方向性或者增加测量距离;相位为了满足一定的同相要求必需增加测量距离。远场的最小距离准则主要是根据被测天线口径上照射的相位差来确定,对于常规天线,普遍认为口径照射相位差不得大于π/8弧度,根据这一原则,可以推导出收发天线的最小距离准则是R≥2D2/λ。

移动通信天线测试问题探讨

/
天线在移动通信系统中的作用好比人的眼睛和耳朵,好比足球队的临门一脚,其性能的好坏直接影响网络覆盖的效果,其可靠性属于单点失效,会直接导致本扇区覆盖失效。而如何准确的测试及评估天线性能,目前仍存在一些问题需要探讨及优化。

八天线LTE系统测试挑战

/
TD-LTE、FDD-LTE和LTE-Advanced(LTE-A)无线技术使用了几种不同的多种输入多路输出(MIMO)技术。鉴于MIMO系统的复杂性正在日益提高,因此相关的测试方法也将更具挑战性。例如,当前已部署的MIMO技术利用两具天线来改善信道性能。还有一些LTE社区已率先开始采用八天线技术来实现更高的性能。这些先进的技术将使测试方法的选择变得更为至关重要。

微波通信工程中天线系统的校准技术

/
在微波通信中,对于天线方位角的校准,传统的方法是根据设计要求的角度,按经纬仪的指示来调整出天线的初始水平方位角和俯仰角度,然后两微波站的天线轮流上、下、左、右转动来捕捉对方的信号。1个天线有2个角度变量,即水平角和俯仰角,在两个微波站间的2个天线要求校准其方位角度,共有4个独立变量要校准。然而由于现场条件的限制,按经纬仪指示调整出来的方位角度与设计要求误差较大,给调整工作带来很大的困难,往往需要花上一两天的时间才能完成。

基于PXI总线为的SAR天线平台测试模块设计

/
PXI总线技术是NI发布的一种全新的开放性、模块化的仪器总线规范,是PCI总线在仪器领域的扩展。它将CompactPCI规范定义的PCI总线技术发展成适合于试验、测量与数据采集场合应用的机械、电气和软件规范。PXI总线与台式PCI规范具有完全相同的性能,是在PCI总线内核技术上增加了成熟的技术规范和要求形成的。它通过增加用于多板同步的触发总线和参考时钟、用于进行精确定时的星形触发总线以及用于相邻模块间高速通讯的局部总线来满足试验和测量用户的要求。

天线近场测试、远场测试、紧缩场测试、天线罩测试 简介

/
每个天线测试应用都有自己的独立特点,而我们提供的近场天线测试系统也有很多不同规格的选择。具体的系统需要根据用户的具体情况进行配置。

天线测试方法选择及评估

/
对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz以下的低频天线通常是使用锥形微波暗室(anechoic…

浅谈TD-SCDMA智能天线基本原理和测试方法

/
1引言 作为第三代移动通信系统标准之一的T…