新型全向吸顶天线主要技术通用技术规范

/
在 3G 试验网建设初期,研究人员就发现:3G 信号衰减快、穿透损耗大、绕射能力差,在室内分布系统中,2G、3G 信号覆盖不能同步,3G 信号覆盖范围小、盲点和弱区多。这些问题是3G 信号频率高所致,通常被认为是不可逾越的技术障碍。要获得良好的3G 室内信号,唯有增加天线密度。所以,对3G 室内分布系统,业界普遍认同“小功率、多天线”的设计原则。然而,这一原则虽然解决了3G 信号覆盖问题,却带来了建设投资成倍增加和大规模的2G 室内分布系统改造,同时,还导致更严重的2G 信号泄漏。

介绍新型全向吸顶天线主要技术特性

/
一、概述   早在 3G 试验网建设初期,研究人员就发现:3G 信号衰减快、穿透损耗大、绕射能力差,在室内分布系统中,2G、3G 信号覆盖不能同步,3G 信号覆盖范围小、盲点和弱区多。这些问题是3G 信号频率高所致,通常被认为是不可逾越的技术障碍。要获得良好的3G 室内信号,唯有增加天线密度。所以,对3G 室内分布系统,业界普遍认同“小功率、多天线”的设计原则。然而,这一原则虽然解决了3G 信号覆盖问题,却带来了建设投资成倍增加和大规模的2G 室内分布系统改造,同时,还导致更严重的2G 信号泄漏。   通过长期观察、测试和研究,我们发现传统全向吸顶天线存在一些技术缺陷,如高频信号向天线正下方聚集,信号分布不均匀、不稳定等。高频信号聚集效应是导致3G 等高频信号快速衰减和覆盖半径小的真正技术原因。经过对宽带天线的技术研究、反复实验和不断改进,我们研发出了宽带、高效、节能和环保的新型全向吸顶天线

对蓝牙的折叠PIFA天线的设计和分析

/
蓝牙是一种支持设备短距离通信(一般是10 m之内)的无线电技术,能在包括移动电话、PDA、无线耳机、笔记本电脑等众多设备之间进行无线信息交换,工作频段是工业、科研、医疗(2.4~2.483 GHz)全球通信自由频段,目前已经广泛应用在移动通信设备中。天线是蓝牙无线系统中用来传送电磁波的重要器件,目前尚无法整合到半导体芯片中。在蓝牙产品中,蓝牙天线的尺寸和性能决定了整个蓝牙模块的尺寸和性能。随着移动通信的发展,个人移动设备趋于小型化和轻薄化,为了适应这一发展,蓝牙天线的尺寸有了严格的要求。单极子天线尺寸过大,不适应于移动通信设备中。传统的PIFA天线虽然将尺寸减小了一半,但相对快速小型化的移动通信产品而言还是尺寸过大。本文根据传统印制倒F型天线的工作原理,设计了一种折叠PIFA天线,尺寸只有16 mm×4.5 mm,设计简单、制造成本低、工作效率高,适用于蓝牙系统。

全向天线和定向天线需要改进的地方

/
先来分析一下在WLAN系统中,全向天线和定向天线在使用时有哪些不足,或者是需要改进的地方。

基站天线的设计流程是怎样的?

/
在过去的十年里,微波器件的自动综合功能在CAE领域的应用越来越普及。Antenna Magus把这种能力带入到了天线设计领域。Antenna Magus以简明的文档、强大的设计算法及输出模型,提供了多种多样的天线形式(如下图所示)。所有的天线都经过精确的研究,以确保每个天线都能满足您的设计需求。软件会立刻根据用户定义目标参数生成所需的天线模型。在Antenna Magus中设计的天线可以作为模型导出到AWR的Microwave Office™/AXIEM®中去分析并与电路和其它系统元件整合。所有的模型都完全的参数化,并且可以与其他项目元件一起优化。真正的实现了将天线的设计整合到了器件和系统的整体设计中。

智能天线技术的要点详解

/
智能天线技术前身是一种波束成形(Beamforming)技术。波束成形技术是发送方在获取一定的当前时刻当前位置发送方和接收方之间的信道信息,调整信号发送的参数,使得射频能量向接收方所处位置集中,从而使得接收方接收到的信号质量较好,最终能保持较高的吞吐量。该技术又分为芯片方式(On-Chip) 和硬件智能天线方式(On-Antenna)的两种。

一种关于无线局域网中的轴向模螺旋天线设计方案

/
螺旋天线是一种宽带行波天线,辐射圆极化波。按结构来分有立体螺旋和平面螺旋两种。立体螺旋天线的辐射特性主要取决于螺旋直径D与波长λ的比值。当D/λ<0.18时,天线最大辐射方向垂直于螺旋轴线,称为法向模辐射或基模辐射,而当3/4π

关于超高性能微波天线馈源系统的设计与分析

/
本文介绍了用于微波接力天线馈源中的C波段超高性能馈源系统的设计方法,利用高频结构仿真软件对其进行了优化设计。对一些重要的和不易调整的尺寸用加偏差的方法来确定加工精度。计算结果与实测结果吻合的较好,在4.4~5GHz的频段中,整个馈源系统的驻波优于1.05,交叉极化鉴别率优于-40dB。

一种新的车载卫星通信天线的跟踪设计策略

/
在车载卫星通信中,由于低轮廓车载天线具有良好的隐蔽性和使用性,应用前景较为广泛。但要实现性价比达到最优,天线跟踪控制器的设计是关键技术之一。在脱离航向引导信息的情况下,要实现车载天线稳定跟踪的控制系统难度较大,提出一种新的跟踪控制策略,使这一问题得到解决。

多天线技术简介

/
在无线通信领域,对多天线技术的研究由来已久。其中天线分集、波束赋形、空分复用(MIMO)等技术已在3G和LTE网络中得到广泛应用。