新型C波段宽带小型化全向天线设计

/
微波全向天线较多应用于一点多址通信中,广泛地应用于军事、航天、遥控、遥测领域。在较低频段中,微波全向天线主要有螺旋天线、交叉馈电式天线、波导缝隙天线;而随着现代通信技术的发展,通信频率向更高的波段发展已是必然趋势,在C波段或更高的频段,波长很短,以上提到的天线由于结构复杂,导致加工费用高,调试困难,并且馈电结构也难于设计,使得天线的带宽较窄;同时这些类型的天线高度均超过半波长或者四分之一波长,天线高度太大导致其占用的体积空间较大,并且天线RCS(雷达散射截面)也较大,对各类载体平台的电磁隐身特性也带来较大影响。

一种采用线极化方式的小型化GPS锥面共形天线阵

/
在航空器、导弹等高速飞行器上,全球定位系统GPS是不可或缺的组件,它广泛应用于导航、测绘、监测、授时、通信等多种领域。而在GPS系统的研究开发过程中,天线成为必须解决的关键问题之一。这些飞行器要求天线既不影响其空气动力性能,又不破坏其机械结构和强度。所以,具有低剖面、易集成等突出性能优点的共形天线阵在飞行器上得到广泛应用。

大规模MIMO的原型制作

/
对无线数据的无线需求不断促使研发人员寻找新的技术来扩大无线数据容量和网络能力。业界专家们普遍认为,即使当前和规划中的基础设施全面展开,数据需求仍然会继续超过现有的能力,辩论已经从这“是否”会发生转为“何时”发生。无线服务提供商纷纷计划将网络升级到4G LTE、LTEAdvanced(LTE-A),以及更先进的技术,推出微蜂窝覆盖、异构网络、载波聚合、3GPP路线图等创新方案。然而很明显,当前技术轨迹产生的容量斜坡仍然比需求线平坦。面对此挑战,3GPP 标准实体近来提出了数据容量“到2020 年增长1000 倍”的目标,以满足演进性或革命性创意的需要。

一种简易短波环形天线(magnetic loop)的制作实例

/
身居城市市区或郊区喜欢收听短波的朋友们可能有同感,即:无论使用长线天线或拉杆天线,5MHz以下频段干扰严重,电台难以收听。这种电场杂波对低频短波干扰的程度比中波更为严重。为了改善该波段的收听质量,在查阅大量中外文资料的基础上,确定试制短波环形天线(国外称之为magnetic loop)。

一种FM收音机接收机解决方案

/
 调频(FM)收音机在高保真音乐和语音广播中已经被采用好多年了,它能提供极好的声音质量、信号鲁棒性和抗噪声能力。最近,FM收音机开始越来越多地用于移动和个人媒体播放器中。然而,传统FM设计方法需要很长的天线,例如有线耳机,从而限制了许多没带有线耳机的用户。另外,随着无线使用模型在便携式设备中的不断普及,更多用户可以从使用其他类型FM天线的无线FM收音机中受益,且同时可利用无线耳机或扬声器来听声音。

手机天线设计中降低降低SAR 的方法研究

/
随着信息技术的发展,大众在享受无线通信设备带来的各种便利之时,也日益关注无线通信终端的电磁辐射对人体健康的影响。在手机天线的研发以及测试领域,天线工程师除了关注TRP(全向辐射功率),TIS(总全向灵敏度),RL(回波损耗),Efficiency(效率)以外,还很非常注重另一指标---SAR(Specific Absorption Rate)。

短波天线的制作方法详解

/
常用的短波天线主要分为3类,第一类是垂直天线(GP),第二类是偶级天线(DP),第三类为八木天线(YAGI)。除此之外,还有框型、钻石型、碟型等等,这里我们主要讨论前三类天线,其中重点探讨偶级天线及其变形。从使用来看,GP天线主要用于近距离—中距离通讯,尤其是近距离通讯依靠地波传送,效果非常好。而DP天线的近距离通讯效果很不好。由于高度的限制,不可能架设很高的天线,一般来说5-10米高度的GP天线适合自己架设。

802.11b/g垂直极化全向天线的制作过程详解

/
  本文介绍一个容易制作的802.11b/g垂直极化全向天线,该天线非常坚固耐用,大约有5-6dBi的增益。很多网站都有制作2.4GHz全向天线的详细说明,但是,这些天线做起来相当复杂,要用很多切割非常精确的小段同轴电缆。同时你还必须知道所使用的同轴电缆的数据,因为大部分尺寸要以此为依据。

微带天线简介

/
常用的微带天线是在一个薄介质基片上,一面附上金属薄层作为接地板,另一面用光刻腐蚀等方法做出一定形状的金属贴片,利用微带线、同轴探针或电磁耦合对贴片馈电,这构成了微带天线。

SAR在结构中解决办法

/
天线的性能和SAR是一对矛盾体。天线性能越好,SAR越不容易通过标准指标。所以设计天线时尽量将天线头部远离接听电话时人体的脑部。有时候需要设计成倾斜的;有时候将天线放在手机的底部;或者涂导电涂料来解决SAR(但是对天线的性能有影响)。